VIPM 2012 VI-Based API Documentation

All Contents Copyright © 2012 JKI 1

Table of Contents

Table of Contents

Help and Resources
General Operation

Functions

Main (Root Palette)
Install VI Packages by Name.vi
Uninstall VI Packages by Name.vi

Library Subpalette
Add VI Packages to VIPM Package Library.vi
Download VI Packages.vi
Network Update and Sync VIPM Package Library.vi
List VIPM Package Library Contents.vi
Remove VI Package from VIPM Package Library.vi

Package Building Subpalette
Build VI package.vi
Read VI Package Build Spec.vi
Write VI Package Build Spec.vi

VI Package Configuration (VIPC) Subpalette
Apply VIPC File.vi
Create New VIPC File.vi
Test VIPC Apply Needed.vi
Scan Project.vi

Utility Subpalette
Exit VIPM.vi
Minimize VIPM.vi
List VIPM LabVIEW Target Version.vi
Switch Target.vi

Repository Subpalette
Publish VI Packages to Repository.vi
Unpublish VI Packages from Repository.vi
List Repository Contents.vi
List VIPM Managed Repositories.vi

All Contents Copyright © 2012 JKI

O NN UTA BRR W W

Help and Resources

If you need assistance with the VIPM API, please visit our support page:

¢ Jki.net/support

General Operation

The VIPM VI-based APl is a collection of VIs that allow you to command and control
VIPM (VI Package Manager). The VIs have been compiled in LabVIEW 2009 and can
be used in code written in LabVIEW 2009 or newer. The VIPM API VIs only work
with VIPM 2012 (or newer) Pro Edition. They do not work with VIPM Free Edition.

In order for the API to work, you must have the main VIPM application running. It
can be minimized, but it must be running.

All Contents Copyright © 2012 JKI

Functions

Main (Root Palette)

Install VI Packages by Name.vi

LabVIEW Version
error in (no error)

pocccccc 21Ol out

VIPH_AP1
Package Names to Install [] =coococef 3

This VI instructs VIPM to perform an install of packages by name. All the packages to
install must already be in the library. If any of the packages are not in the library
then an error will be returned and the process will be aborted. You can perform a
check to see if the packages are in the library by using the API VI called: “List VIPM
Package Library Contents.vi” located under the Library sub palette.

If you need to add the package to the library first, you can use the API VI called: “Add
VI Packages to VIPM Package Library.vi” located in the Library sub palette.

If you think the package should be in the Library, but it cannot be found, it’s possible
that the Library is out of sync with your repository subscriptions. You can perform
an update by using the API VI called: “Network Update and Sync VIPM Package
Library.vi” located in the Library sub palette.

Note: if you always install multiple packages as a group, you should consider
using VI Package Configuration files also known as VIPC files. This allows you
to group your packages into a single file. Then you can install them as a group
using the API VI called: “Apply VIPC File.vi” located in the VIPC subpalette.

Package Names to Install: This is an array of package names. The package name
must be in the following format: package_name-x.x.x.x. For example:
acme_lib_gpib_toolkit-1.0.0.1. The best way to figure out the package name is to use
the API VI called: “List VIPM Package Library Contents.vi” located under the Library
subpalette. You can then perform a search lookup based on display name or other
criteria.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

All Contents Copyright © 2012 JKI 4

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

Uninstall VI Packages by Name.vi

VIPH_API
Package Names to Uninstall []
LabVIEW Version fh
error in (no error) :

quiet? (T) =

This VI instructs VIPM to perform uninstallation of packages by name. All the
packages to install must already be in the library and installed. If any of the
packages are not in the library or not installed then an error will be returned and
the process will be aborted. You can perform a check to see if the packages are in the
library or installed by using the API VI called: “List VIPM Package Library
Contents.vi” located under the Library subpalette.

error out

Package Names to Uninstall: This is an array of package names. The package name
must be in the following format: package_name-x.x.x.x. For example:
acme_lib_gpib_toolkit-1.0.0.1. The best way to figure out the package name is to use
the API VI called: “List VIPM Package Library Contents.vi” located under the Library
subpalette. You can then perform a search lookup based on display name or other
criteria.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

All Contents Copyright © 2012 JKI 5

Library Subpalette

Add VI Packages to VIPM Package Library.vi

Packages to add to VIPM Lib... »eeeceoq @jocceeee Package Names Added
error in (no error) ML error out

This VI instructs VIPM to add packages (by path) to the library.

Package to add to VIPM Library (vipc, vip, ogp): This is an array of package source
paths. This can be a mixture of *.vip, *.ogp or *.vipc files. When operating on VIPC
files, VIPM will pull out the packages from the VIPC file and add them to the library.

Note: if you are using the API VI called: “Apply VIPC File.vi”, you do not need
to add the contents of the VIPC file to the library since VIPM does this
automatically as part of the “Apply” process.

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

Package Names Added: This will return a list of the package names that were just
added to the library. You can use this output to perform other actions on the
packages downstream.

Download VI Packages.vi
Package Names to Download [] ccoooecf ?

LabVIEW Version o BT booooaccs error out
error in (no error) == :

This VI instructs VIPM to download packages by name. This will pull packages from
the remote repositories and download the *.vip files to the package library. This is
useful (for example) if you want to install packages while you are offline at a later
time.

Package Names to Download: This is an array of package names. The package
name must be in the following format: package_name-x.x.x.x. For example:
acme_lib_gpib_toolkit-1.0.0.1. The best way to figure out the package name is to use
the API VI called: “List VIPM Package Library Contents.vi” located under the Library
subpalette. You can then perform a search lookup based on display name or other
criteria.

All Contents Copyright © 2012 JKI 6

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

Network Update and Sync VIPM Package Library.vi

LabVIEW Version o eee==e= New Package Updates
error in (no error) = Jooooocs error out
qUiet? m ;

This VI instructs VIPM to check the repository subscriptions for updates to installed
packages.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

New Package Updates: This output will contain the names of the packages that
have updates. You can use this information to perform an install of the updates
downstream.

List VIPM Package Library Contents.vi

=
w
-
.

LabVIEW Version
error in (No error) e

zzzo | ibrary Contents []
error cut

All Contents Copyright © 2012 JKI 7

This VI lists the entire contents of the VI Package Library that is managed by VIPM.
The contents are filtered based on the LabVIEW version specified.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Library Contents: This is the library contents output. It’s an array of clustered data.
The following info is in the cluster:

Package Name: This is the full package name. This is the only name that
should be used for all other functions in this API.

Version: This is the package version.

Display Name: This is the package display name that is shown in the package
list. This is also known as the product name.

Repository name: This is the name of the repository in which the package
originated. If the package is unpublished (does not belong to a repository),
then “Unpublished” is returned in this field.

Company Name: This is the company name for the package.
License Type: This is the license type name for the package.
Installed: This will be TRUE if the package is installed.
Deprecated: This will be TRUE if the package is deprecated.

Dependency or Conflict Problem: This will be TRUE if the package has a
conflict or dependency problem.

Downloaded: This will be true if the package is downloaded to the local
package library.

Remove VI Package from VIPM Package Library.vi

VIPH_AFI
Package Names to Remove @oeocooed gm Packages Removed
LabVIEW Version jmw __ error out
error in (no error)
quiet? (T)

This VI will remove packages from the VI Package library that VIPM manages. Only
packages that are unpublished can be removed. Published packages will not be
removed. Also, if the package is installed on any LabVIEW version, it will not be
removed.

All Contents Copyright © 2012 JKI 8

The packages that are removed successfully will be listed in the “Packages
Removed” output.

Package Names to Remove: This is an array of package names. The package name
must be in the following format: package_name-x.x.x.x. For example:
acme_lib_gpib_toolkit-1.0.0.1. The best way to figure out the package name is to use
the API VI called: “List VIPM Package Library Contents.vi” located under the Library
subpalette. You can then perform a search lookup based on display name or other
criteria.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

Packages Removed: This output will list all the package names that were actually
removed successfully.

All Contents Copyright © 2012 JKI 9

Package Building Subpalette

Build VI package.vi
VIFH AFI
Path to VIPB File - Build Output
error in (No error) seeee= BUILD Whoooooce error out

This VI allows you to perform a package build. VIPM will use the existing vipb build
spec located at the path specified.

Path to VIPB File: This is a path to the vipb build spec. For example: “c:\my
project\.vipb”.

Build Output: This is a path to the final built package file.

Read VI Package Build Spec.vi

Path to VIPB File
error in (no error)

VIPH_AFI .
&) == VIPackage Build Spec Data
2 poccoccs error out

This VI allows you to read some information from the package build spec. VIPM will
use the existing vipb build spec located at the path specified.

Path to VIPB File: This is a path to the vipb build spec. For example: “c:\my
project\.vipb”.

VI Package Build Spec Data: This is a cluster containing some package build spec
information:

* Package Version

* Product Name

* (Company Name

* Author Name (Person or Company)
* Product Homepage (URL)

* Legal Copyright

* License Agreement Name

* Product Description Summary

* Product Description

* Release Notes - Change Log

All Contents Copyright © 2012 JKI 10

Write VI Package Build Spec.vi

Path to VIPB File
VI Package Build Spec Data s
error in (no error)

VIFH APL
R

error out

This VI allows you to read some information from the package build spec. VIPM will
use the existing vipb build spec located at the path specified. If you specify a path to
a vipb file and the file does not exist, VIPM will create a default file using the source
file contents located at the base folder and the provided VI Package Build Spec Data
input.

Path to VIPB File: This is a path to the vipb build spec. For example: “c:\my
project\.vipb”.

VI Package Build Spec Data: This is a cluster containing some package build spec
information that will be written to the file:

* Package Version

* Product Name

* (Company Name

* Author Name (Person or Company)
* Product Homepage (URL)

* Legal Copyright

* License Agreement Name

* Product Description Summary

* Product Description

* Release Notes - Change Log

All Contents Copyright © 2012 JKI 11

VI Package Configuration (VIPC) Subpalette

Apply VIPC File.vi

VIPC File .

| .

LabVIEW Version - gt 550 error out
error in (no error)
quiet? (T] H

This VI will apply a package configuration (VIPC) file specified in the VIPC File input
path. If no LabVIEW version is specified then the LabVIEW version defined in the
VIPC file is used.

VIPC File: This is a path to an existing VI Package Configuration (VIPC) file.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Quiet? : This is a Boolean input. If set to TRUE (default), there will not be any dialogs
displayed on the VIPM user interface. VIPM will perform the action silently. If you
are having problems running the action, you can try setting this to FALSE so you can
see any possible dialogs displayed.

Create New VIPC File.vi

Path to New VIPC File -
LabVIEW Version =~ |Ls
error out

error in (no error) ==

This VI will create a blank VIPC file configured for the LabVIEW version specified.
This is useful when using it with the VIPM API VI called: “Scan Project.vi” to allow
creation of new project configurations.

Path to New VIPC File: This is a path to where you want the VIP file saved.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with

All Contents Copyright © 2012 JKI 12

VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Test VIPC Apply Needed.vi

VIPH_AP1
VIPC File Path :‘l /? """"""""" Need to Apply?
LabVIEW Version (use vipc v... mjm"j_x error out

error in (no error)

This VI will perform a check to see if the configuration file specified in the ‘VIPC File
Path’ input needs to be applied. If no LabVIEW version is specified then the version
configured inside the VIPC is used.

VIPC File Path: This is a path to the VIPC file you want to check.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

Scan Project.vi

LabVIEW Version)
Project file, VI or project... Nj*"““'j LQ, error out
Path to VIPC File 1
error in (no error)
QUIEt? (T) = j

This VI will perform a scan of your project file (Ivproj), source folder or toplevel VI.
The scanning results are saved to the VIPC file path specified. The LabVIEW version
is optional since VIPM will use the version found in the files scanned.

Project file, VI or project directory path: This is a path to the scan source.
VIPC File Path: This is a path to the VIPC file you want to write the results to.

All Contents Copyright © 2012 JKI 13

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

All Contents Copyright © 2012 JKI 14

Utility Subpalette

Exit VIPM.vi
VIFH_API
error in (no error) —m error out
This VI will exit VIPM
Minimize VIPM.vi
VIFH AFI
error in (No error) seeeeo B error out

This VI will minimize VIPM

List VIPM LabVIEW Target Version.vi

[VIFH&FT]
ez | abVIEW Target Info
error in (no error) LIS error out

List Invalid Targets? (F) - ;

This VI will list all the LabVIEW versions that are configured with VIPM.

List Invalid Targets? (F): When set to TRUE, this indicates if the returned target list
includes invalid targets. Invalid targets are the ones that have not been verified with
VIPM or are disabled. You cannot perform any VIPM function on invalid targets.

LabVIEW Target Info: This is an array of cluster data containing the following info:
Version: The LabVIEW version configured

Connection Tested: Whether VIPM has gone through the connection test
process.

Disabled: Whether the LabVIEW version has been disabled in the VIPM
configuration.

All Contents Copyright © 2012 JKI 15

Switch Target.vi

LabVIEW Version ~[UiEH&F]

error in (No error) weecead SWITCH error out

This VI will switch VIPM to use the LabVIEW version specified on the LabVIEW
Version input.

LabVIEW Version: This is the version of LabVIEW you want to use for this action.
The LabVIEW version you want to use must already be configured and tested with
VIPM, otherwise you will get errors. The LabVIEW version must be in the following
format: Major. Minor. For example: LabVIEW 8.5 = 8.5, LabVIEW 2009 = 9.0,
LabVIEW 2011 = 11.0. The best way to figure out what LabVIEW versions are
registered with VIPM on your system is to use the API VI called: “List VIPM LabVIEW
Target Versions.vi”. If you are installing on 64-bit LabVIEW then you must append
the (64-Bit) suffix. For example: 11.0 (64-Bit).

All Contents Copyright © 2012 JKI 16

Repository Subpalette
Publish VI Packages to Repository.vi
Packages to add to Reposito...

Repository Name ~ ¢
error in (no error) ==

 Package Names Published
= error out

This VI will publish packages to the repository specified in the Repository Name
input.

Packages to Publish to Repository: This is a list of package paths to publish to the
repository.

Repository Name: This is the name of the repository you wish to publish to. You can
find out what the names of the repositories are by running the VIPM API VI called:
“List VIPM Managed Repositories.vi”

Package Names Published: This will return the package names of the packages
published.

Unpublish VI Packages from Repository.vi

Package Names to Remove ceeecoee B‘?m Package Names Unpublished
Repository Name o el * error out
error in (no error)

This VI will unpublish packages from the repository specified in the Repository
Name input.

Packages to publish to Un-Publish: This is a list of package paths to publish to the
repository.

Repository Name: This is the name of the repository you wish to Un-Publish from.
You can find out what the names of the repositories are by running the VIPM API VI
called: “List VIPM Managed Repositories.vi”

Package Names Un-Published: This will return the package names of the packages
un-published.

List Repository Contents.vi

]

Repository Name i) i=f=== Repository Contents []
error in (no error) LIST PRG error out

This VI will list the contents of the repository specified in the Repository Name
input. This is the name of the repository that you are managing.

All Contents Copyright © 2012 JKI 17

Repository Name: This is the name of the repository you wish to Un-Publish from.
You can find out what the names of the repositories are by running the VIPM API VI
called: “List VIPM Managed Repositories.vi”

Repository Contents: This is an array of clustered data that contains the following
info:

Package Name: This is the package name of the package in the repository.
Version: This is the version of the package in the repository.

Display Name: This is the display name (product name) of the package in the
repository.

Release Date: This is the date that the package was published to the
repository.

Deprecated: This will be TRUE, if the package is deprecated.

List VIPM Managed Repositories.vi

iiié

=zzzn Managed Repositories Info

error in (No error) seeccc{UIST REPOhacocas error out

This VI will list all the repositories that are managed with VIPM.
Managed Repositories Info: This is an array of clustered data with the following info:
Repository Name: This is the name of the repository.

Repository Folder Location: This is the physical location of the repository on
disk.

All Contents Copyright © 2012 JKI 18

