
PUSHING THE LIMITS OF LABVIEW

Architecture Consulting for LabVIEW Applications
The Systems Engineering group at National Instruments helps our
customers build solutions with NI hardware and software. My team
focuses on applications based on our real-time embedded platform, so
our expertise spans machine control, embedded systems, data logging,
structural test, structural health monitoring applications, and more.

Like most development teams, we follow a structured process from
requirements to design, development, test, validation, and deployment.
However, unlike many development groups, we have to track these
processes for both our own projects and our customers’ projects. Our
challenge is compounded because the Systems Engineering group has
teams all over the world, so we need well-defined collaboration processes
to work together on individual projects and share code between projects.

As part of our focus on engineering best practices, we started a more
concerted effort to develop and share LabVIEW code for reuse about six
years ago.

Distributing LabVIEW Code Before VI Packages –
Easier Said than Done
At the time, the Systems Engineering group was heavily focused on
creating reference designs, components and libraries of code we wanted
to share with our customers. Our goal was to take code we’d created for
individual customers – basically proofs of concepts – and turn those VIs
into more general libraries we could share online with others.

Originally, we used Windows™ installers built with the LabVIEW
Application Builder to package source code for distribution. However,
the installer was clumsy and we had trouble with dependencies and
versioning. A lot of our components have dependencies on each other, so
we’d have to manually run each installer in turn. We also had to document
the process in detail for the customer. In one case, we created a reference
architecture that comprised eight components, so the customer had to
run multiple individual installers before they could open the example.

THE GOAL
Reuse and distribute LabVIEW code to our
customers - and within our own internal
software group - without the hassles
normally associated with code sharing.

THE SYSTEM
• Better engineering process supported

by code reuse

• More collaboration between
global teams

• Reduced opportunity for
installation errors

• Substantial time saved by using VIPM
to create and distribute VI Packages

• Team motivated to produce better code,
because it will be shared

11500 N Mopac Expwy

Austin, TX 78759

888.280.7645

ni.com

By Christian Loew, Systems Engineering Manager, National Instruments

JKI’s VI Package Manager Drives Worldwide
Collaboration for NI Systems Engineering

http://www.ni.com

2

We tried to mitigate this effect by bundling everything together in a
monolithic “master installer,” but that approach created a versioning
problem. Anytime we made a change to an individual component, we had
to rebuild the entire master installer.

Another VI distribution solution was to provide source code in a ZIP file.
ZIP files are easier to create than installers, and some customers preferred
them because they offer more control over where files are installed.
However, installing libraries from ZIP files is a manual – and thus error-
prone – process, especially when the location of the installed files is
important. Because LabVIEW relies heavily on the relative paths between
VIs and components, it is critical to install files in the right locations. If
these relationships aren’t preserved, LabVIEW can’t find the required VIs
during loading and the code breaks.

Once we learned about VI Package Manager (VIPM), we realized its
VI Packages would be a better method to distribute LabVIEW source
code. Originally we wrote our own tool for building VI Packages, but in
2010, JKI’s VI Package Manager incorporated Package Building as a
free feature in the Community Edition. We switched to using VIPM
Community immediately.

Eliminating Code
Sharing Risks and
Headaches with VIPM
VIPM circumvents a lot of
major headaches and risks
normally associated with
sharing code with colleagues
and customers.

First, VIPM makes it very
easy to upgrade and
downgrade installed VI
Packages. For example,
recently we needed to update
an old example application
that used a previous version
of a VI package. With VIPM,
I was able to easily
downgrade the VI package
installed in my LabVIEW
environment to an older

version, load the example, make the necessary changes, and send it
back to the customer. In addition, I was able to switch back to the newer
version of the package on my LabVIEW system quickly to continue other
development projects. With any another system, making changes in an
application using an older library would be very manual, error-prone, and
time-consuming.

“Once we learned about VI
Packages, they quickly
became our preferred way to
distribute LabVIEW source
code for reuse.”

– Christian Loew

VIPM installs your reusable VIs directly into the
LabVIEW functions palette

3

Another big advantage to VIPM is that it works with multiple versions of
LabVIEW. Without VIPM, if you have more than one copy of LabVIEW
installed, it’s very difficult to install a component into multiple copies of
LabVIEW. After you install a library into one copy of LabVIEW, the installer
thinks it is already installed everywhere, so it won’t install again into a
different location. Prior to VIPM, the only solution was to manually install
libraries into each LabVIEW version – another error-prone time sink.

We also like that VIPM installs VI libraries directly into the LabVIEW
functions palette, where our customers can access our add-on libraries as
easily as any built-in LabVIEW functions. It’s also nice that we can build
custom subpalettes that are specific to certain modules such as Real-
Time or FPGA, a feature that helps keep us and our customers organized.

Now that VIPM powers the LabVIEW Tools Network and is a preferred
method to distribute LabVIEW add-ons, it’s an even more convenient
solution for us; we can easily recommend it to our customers.

Everyone Contributes; Everyone Benefits
In addition to packaging code for customers, recently we’ve increased our
focus on code reuse within Systems Engineering. My group, as well as the
RF (Radio Frequency), Automated Test, and Sound and Vibration groups,
all use the free VIPM Community Edition to create components and
libraries for team distribution, and we’re definitely encouraging other NI
Systems Engineering groups around the world to do the same so we can
all enjoy the benefits:

1. Time savings – VIPM puts all of our reusable LabVIEW code libraries
into modular packages and manages the complexities around them,
such as versioning and dependencies. It’s much faster for us to

“VIPM has helped us set up a
more formalized method for
sharing and reusing code.
We’d highly recommend it for
other teams who need to do
the same.”

– Christian Loew

NI Systems Engineering group’s code library in VIPM

4

package code for distribution, and much faster for others to install it.
The tool is particularly helpful when we’re replicating a development
environment for an old project. For example, when I was updating
that old example application, it probably took 3-4 minutes with VIPM.
Without it, I’d have had to use the installers, and it would have taken
20-30 minutes – that’s a 5-10X time savings!

2. Reduced opportunity for error – by automating the packaging and
installation process, we remove the possibility of user error, so our
customers are more likely to get working code on the first try. This
benefit is especially important if you have a lot of dependencies
where code needs to be installed in the right place; VIPM will even
tell you if something is missing.

3. More team collaboration and code reuse – global collaboration
has been a focus for the Systems Engineering group for a few years.
VIPM reduces the barrier to sharing code, and now that it’s easy, our
teams do it a lot more. NI systems engineers from around the world
are now adding libraries and packages to our code library here, and
everyone benefits.

4. Developers are motivated to produce better code – when
developers know their code will be reused and seen by others, they
go through the effort to create cleaner code. We’ve already noticed
this effect.

To help us centralize and reuse our code even further, we’re about to
upgrade to the Enterprise version of VIPM, which provides a private code
repository. Enterprise will also give us the ability to use VI Package
Configurations* to recreate the exact environment used for past projects.

VIPM is an integral part of our process for sharing and reusing code, and
we’d highly recommend it for other teams who need to do the same. VIPM
won’t create your process by itself – you still need the discipline to create
well-designed, clean, reusable code – but it will give you the capabilities
you need to build and distributed LabVIEW components and libraries
quickly and easily, in a consistent manner, for any LabVIEW environment.

*VI Package Configurations are available in the VIPM Professional Edition
as well as the Enterprise Edition. For a list of features present in each
edition, please visit jki.net/vipm/compare. P.O. Box 2846

Walnut Creek CA 94595

888.891.7821

jki.net

info@jki.net

 jki.net/blog

 facebook.com/JKISoftware

 twitter.com/JKISoftware

JKI is a National Instruments
Certified Alliance Partner.

VI Package Manager makes it easy to
download and install LabVIEW Add-ons,
create your own commercial add-ons,
and share add-ons with your coworkers,
customers, and the LabVIEW community.

Visit jki.net/vipm to learn more!

© 2011 JKI. All rights reserved. Product and company names are trademarks or trade names of their respective companies.

http://jki.net/vipm/compare
http://jki.net
mailto:info%40jki.net?subject=
http://jki.net/blog
http://facebook.com/JKISoftware
http://twitter.com/JKISoftware
http://jki.net/vipm

